Saturday, September 25, 2010

PV Manufacturers globally produced an impressive 51% increase in 2009 from the year before.



Solar photovoltaic (PV) cell manufacturers produced a record 10,700 megawatts of PV cells globally in 2009—an impressive 51-percent increase from the year before. While growth in 2009 slowed from the remarkable 89-percent expansion in 2008, it continued the rapid rise of an industry that first reached 1,000 megawatts of production in 2004. By the end of 2009, nearly 23,000 megawatts of PV had been installed worldwide, enough to power 4.6 million U.S. homes. Solar PV, the world’s fastest-growing power technology, now generates electricity in more than 100 countries.
Made of semiconductor materials, PV cells convert solar radiation directly into electricity. Rectangular panels consisting of numerous PV cells can be linked into arrays of various sizes and power output capabilities—from rooftop systems of one to several kilowatts to ground-mounted arrays of hundreds or even thousands of megawatts. (One megawatt equals 1,000 kilowatts.)

There are two broad categories of PV: crystalline silicon and thin-film. Crystalline silicon cells account for more than 80 percent of the annual PV market. But thin-film PV, a relatively new technology that is less efficient but also less expensive to make and potentially adaptable to more applications, is gaining ground. In fact, First Solar, a thin-film company headquartered in Arizona but with most of its production capacity in Malaysia, was the top PV manufacturing firm in 2009, contributing roughly 10 percent of world PV production.

China produced 3,800 megawatts of PV in 2009, leading all countries for the second straight year. Together China and third place Taiwan accounted for 49 percent of all PV manufacturing, a share that should keep climbing as companies there grow larger and more quickly than competitors based in countries where operating costs are higher. Rounding out the top five producers in 2009 were Japan in second place, Germany in fourth, and the United States in fifth.These traditional industry leaders have lost significant market share with the recent ascent of China and Taiwan. Indeed, Japan, which dominated the global market in 2004, controls just 14 percent today.

While China now manufactures more than a third of the world’s PV cells, most Chinese consumers cannot yet afford the technology. Ninety-five percent of its production is exported, much of it bound for Germany, the world leader in using PV. Germany installed a record 3,800 megawatts of PV in 2009, more than half the 7,200 megawatts added worldwide. This brought Germany’s overall PV generating capacity to 9,800 megawatts, nearly three times as much as the next closest country, Spain. Already in the first half of 2010, Germany added another 3,800 megawatts.

Italy was first runner-up in newly installed PV in 2009 with 730 megawatts, more than doubling its total installed capacity. Japan and the United States, third and fourth in both new and overall PV generating capacity, each installed close to 500 megawatts in 2009.


World installed PV capacity has grown 16-fold over the past decade in large part due to government incentives encouraging the use of solar power. Although PV production and installation costs have fallen substantially over time, government support will be necessary until solar reaches grid parity (price competitiveness) with heavily subsidized fossil fuels. Incorporating fossil fuels’ largely externalized costs, such as climate change and pollution-related illnesses, into the price of fossil-generated electricity would further accelerate PV’s march to grid parity.


The most important solar incentive to date is the feed-in tariff, which guarantees generators of renewable electricity—including homeowners, private firms, and utilities—a long-term purchase price for each kilowatt-hour they produce. This powerful incentive to invest in renewables has now been adopted by some 50 countries, including Ecuador, Israel, Japan, Kenya, Pakistan, Thailand, and most of the European Union. Deutsche Bank estimates that feed-in tariffs had driven 75 percent of world PV installations as of 2008.

Nowhere has the feed-in tariff been more effective than in Germany. In a country that on average receives about as much sunlight as cloudy Seattle, this premium payment for solar electricity has not only spurred Germany to preeminence in installed PV capacity, it has also helped grow a domestic solar industry with more than 10 billion euros ($13 billion) in annual sales.

With PV system prices plummeting, including a 30-percent drop in 2009 alone, the German government announced in mid-2010 that in order to control costs and bring support levels in line with market conditions, it would reduce tariff rates further than the annual cuts originally stipulated by law. While industry stakeholders warn of job losses and reduced demand, the government believes that other changes, including allowing larger systems to qualify for the premium, will ensure further growth. Electricity from PV could reach grid parity in Germany by 2013.

The United States, where total PV connected to the grid is doubling every two years, has no national feed-in policy. Instead, federal tax credits along with various state and local programs, including renewable portfolio standards (RPS) that require utilities to get a certain percentage of the electricity they sell from renewables, have been the main drivers of U.S. PV growth. With an RPS mandating 33-percent renewable electricity by 2020, California has 60 percent of the total 1,260 megawatts of grid-tied PV in the United States. Although this state still leads by a wide margin, others are growing more rapidly. Five states doubled their installed PV in 2009, including Florida, home of the new 25-megawatt DeSoto plant, currently the country’s largest PV park.

While interest in small-scale installations keeps growing in industrial and developing countries, the PV landscape is evolving to include utility-scale, multiple-megawatt solar parks of the DeSoto variety. In September 2010, a newly-expanded 80-megawatt park in Ontario, Canada, overtook a plant in central Spain to become the largest operational PV power plant in the world. Spain and Germany currently account for 8 of the top 10 plants, but that list could soon change dramatically as ambitious projects in other countries come online. China, with scarcely 300 megawatts of installed PV at the end of 2009, has a pipeline of large projects worth a total of 12,000 megawatts. The United States has 23 projects ranging from 100 to 5,000 megawatts under development in the arid Southwest. But these simply scratch the surface of that region's potential: harnessing a mere 2.5 percent of the annual solar radiation striking the Southwestern land suitable for solar power plants could produce as much energy as the country currently uses.

India also is bidding to become a major player in the solar market, having announced its Jawaharlal Nehru National Solar Mission in November 2009. Named for India’s first prime minister, the Mission envisions 20,000 megawatts of grid-connected solar power and 2,000 megawatts of distributed, off-grid solar installations by 2022. The planned capacity build-out will be roughly half PV and half concentrating solar thermal power, another budding solar technology. If India meets its target, it would be a tremendous boost for a country with vast solar resources but an estimated 400 million people who lack electricity.

Even with the lingering effects of the global recession, more than 16,000 megawatts of PV are slated to be installed in 2010. Germany will likely again account for half of the newly added capacity, as developers rush to finish projects before cuts in the feed-in tariff fully take hold. Beyond 2010, analysts expect annual PV installations to be more evenly distributed among an expanding roster of countries. With costs dropping, economies of scale growing, and governments realizing the benefits of this limitless, climate-friendly resource, the future for solar power looks bright.

Ref: Earth Poilcy Institute

Tuesday, September 14, 2010

New Antenna made of Carbon Nanotubes could make Photovoltaic Cells more Efficient, according to MIT Researchers.


Using carbon nanotubes (hollow tubes of carbon atoms), MIT chemical engineers have found a way to concentrate solar energy 100 times more than a regular photovoltaic cell. Such nanotubes could form antennas that capture and focus light energy, potentially allowing much smaller and more powerful solar arrays.

"Instead of having your whole roof be a photovoltaic cell, you could have little spots that were tiny photovoltaic cells, with antennas that would drive photons into them," says Michael Strano, the Charles and Hilda Roddey Associate Professor of Chemical Engineering and leader of the research team.

Strano and his students describe their new carbon nanotube antenna, or "solar funnel," in the Sept. 12 online edition of the journal Nature Materials. Lead authors of the paper are postdoctoral associate Jae-Hee Han and graduate student Geraldine Paulus (pictured above).

Their new antennas might also be useful for any other application that requires light to be concentrated, such as night-vision goggles or telescopes.

Solar panels generate electricity by converting photons (packets of light energy) into an electric current. Strano's nanotube antenna boosts the number of photons that can be captured and transforms the light into energy that can be funneled into a solar cell.

The antenna consists of a fibrous rope about 10 micrometers (millionths of a meter) long and four micrometers thick, containing about 30 million carbon nanotubes. Strano's team built, for the first time, a fiber made of two layers of nanotubes with different electrical properties — specifically, different bandgaps.

In any material, electrons can exist at different energy levels. When a photon strikes the surface, it excites an electron to a higher energy level, which is specific to the material. The interaction between the energized electron and the hole it leaves behind is called an exciton, and the difference in energy levels between the hole and the electron is known as the bandgap.

The inner layer of the antenna contains nanotubes with a small bandgap, and nanotubes in the outer layer have a higher bandgap. That's important because excitons like to flow from high to low energy. In this case, that means the excitons in the outer layer flow to the inner layer, where they can exist in a lower (but still excited) energy state.

Therefore, when light energy strikes the material, all of the excitons flow to the center of the fiber, where they are concentrated. Strano and his team have not yet built a photovoltaic device using the antenna, but they plan to. In such a device, the antenna would concentrate photons before the photovoltaic cell converts them to an electrical current. This could be done by constructing the antenna around a core of semiconducting material.

The interface between the semiconductor and the nanotubes would separate the electron from the hole, with electrons being collected at one electrode touching the inner semiconductor, and holes collected at an electrode touching the nanotubes. This system would then generate electric current. The efficiency of such a solar cell would depend on the materials used for the electrode, according to the researchers.

Strano's team is the first to construct nanotube fibers in which they can control the properties of different layers, an achievement made possible by recent advances in separating nanotubes with different properties.

While the cost of carbon nanotubes was once prohibitive, it has been coming down in recent years as chemical companies build up their manufacturing capacity. "At some point in the near future, carbon nanotubes will likely be sold for pennies per pound, as polymers are sold," says Strano. "With this cost, the addition to a solar cell might be negligible compared to the fabrication and raw material cost of the cell itself, just as coatings and polymer components are small parts of the cost of a photovoltaic cell."

Strano's team is now working on ways to minimize the energy lost as excitons flow through the fiber, and on ways to generate more than one exciton per photon. The nanotube bundles described in the Nature Materials paper lose about 13 percent of the energy they absorb, but the team is working on new antennas that would lose only 1 percent.

REf: MIT News Office

Thursday, September 02, 2010

Sweden is a world leader in the field of Bio Energy


As part of the International Training Programme on "Wind Energy Development and Use" conducted by LIFE Academy and sponsored by the Swedish International Development Cooperation Agency (SIDA), Sweden, I had a chance to visit the local Bio Gas Plant at Halland region in Sweden. The Biogas Plant has a 300 cumic meter digester for anaerobic digestion. A mixture of cow dung and vegetable wastes are the main waste feeds in the Plant. The main feature of the Biogas Plant is a Biogas upgrading unit which is used to upgrade a 58% Methane Biogas to a 96% Methane Biogas. After the upgradation the carbon dioxide content in the Biogas is reduced from 37% to 4% and other unwanted gases are initially 5% and later reduced to 0%. This upgraded Biogas is used as the fuel for vehicles in Sweden. I could see a lot of buses and cars running in Sweden utilising Biogas as fuel. In the southern Swedish city of Malmo almost all the buses are powered with Biogas. The whole unit has got a cute Sterling Engine for electricity generation as well.

Newly published energy statistics for 2009 show that bioenergy today makes up a larger share of Sweden’s energy use than oil: 31.7 percent bioenergy compared to 30.8 oil.

The numbers are based on preliminary statistics from the Swedish Energy Agency and were presented by Svebio – the Swedish Bioenergy Association. The final energy use includes all sectors of the Swedish society: industry, transport, residential, services, etc.

Svebios analyses also shows that the total share of renewable energy, using the definition in EU:s renewable energy directive (RED), was 46.3 percent in 2009. This is well ahead of the EU target trajectory, and only 3.7 percent short of the EU target for Sweden of 49 percent in 2020. The major renewable energy source beside bioenergy is hydropower. Wind power is still a relatively small contributor to the energy supply.

The main reason for the fast increase of renewable energy in recent years is the steady growth of bioenergy use. Biomass is the primary energy source in the district heating sector, which supplies more than half of the total heat demand in the residential sector. The use of by-products and residues in the forest industry is another major component. Bioelectricity has expanded both with combined heat and power plants in district heating and in the forest industry. Pellets and fuelwood play a major role in heating of single homes. Finally, more than 5 percent of transport fuels are biofuels – ethanol, biodiesel and biogas. In all, the Swedish bioenergy business sector is in a phase of strong expansion, which is confirmed by the statistics.

This was very interesting to me because of the potential of biogas plants in India. In India we have got 42.6 lakhs Family Type Biogas Plants (up to 30th June 2010, according the Minstry of New and Renewable Energy (MNRE) Website, Govt. of India). However the total capacity or the other statistics of Community based biogas plants is unknown. In India , most of the Biogas Plants are producing Raw Biogas which is generally used for cooking purposes. In some cases electricity is generated for lighting purposes without proper upgradation. The Biogas upgradation technology and the potential of upgradation is very important if we are using biogas as a fuel for transportation. This is has to be brought to the attention of researchers, investers and project developers who want to invest in India in the Biogas sector.

Wednesday, September 01, 2010

Americans Using Less Energy and More Renewables


The United States has significantly reduced their energy consumption and making use of more renewable energy sources.

The United States used significantly less coal and petroleum in 2009 than in 2008, and significantly more wind power. There also was a decline in natural gas use and increases in solar, hydro and geothermal power according to the most recent energy flow charts released by the Lawrence Livermore National Laboratory.

"Energy use tends to follow the level of economic activity, and that level declined last year. At the same time, higher efficiency appliances and vehicles reduced energy use even further," said A.J. Simon, an LLNL energy systems analyst who develops the energy flow charts using data provided by the Department of Energy's Energy Information Administration.

"As a result, people and businesses are using less energy in general."

The estimated U.S. energy use in 2009 equaled 94.6 quadrillion BTUs ("quads"), down from 99.2 quadrillion BTUs in 2008. (A BTU or British Thermal Unit is a unit of measurement for energy, and is equivalent to about 1.055 kilojoules).

Energy use in the residential, commercial, industrial and transportation arenas all declined by .22, .09, 2.16 and .88 quads, respectively.

Wind power increased dramatically in 2009 to.70 quads of primary energy compared to .51 in 2008. Most of that energy is tied directly to electricity generation and thus helps decrease the use of coal for electricity production.

"The increase in renewables is a really good story, especially in the wind arena," Simon said. "It's a result of very good incentives and technological advancements. In 2009, the technology got better and the incentives remained relatively stable. The investments put in place for wind in previous years came online in 2009. Even better, there are more projects in the pipeline for 2010 and beyond."

The significant decrease in coal used to produce electricity can be attributed to three factors: overall lower electricity demand, a fuel shift to natural gas, and an offset created by more wind power production, according to Simon.

Nuclear energy use remained relatively flat in 2009. No new plants were added or taken offline in this interval, and the existing fleet operated slightly less than in 2008.

Of the 94.6 quads consumed, only 39.97 ended up as energy services. Energy services, such as lighting and machinery output, are harder to estimate than fuel consumption, Simon said.


"The reduction in the use of natural gas, coal and petroleum is commensurate with a reduction in carbon emissions," he said. "Simply said, people are doing less stuff. Therefore, they're burning less fuel."


Ref: DOE/Lawrence Livermore National Laboratory

New and Renewable Energy

New and Renewable Energy
Your source for the New and Renewable Energy News and Technologies